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Abstract  —  Fires can be destructive and dangerous to 

property and life. Early detection and response are key to 

mitigating the possible damage and danger that fires present. 

This project is a new prototype system to detect fires using 

sensors targeted for flame, smoke, and gas to detect the 

presence of a forest fire quickly and efficiently. Machine 

learning based image processing is done on an image taken at 

the area of interest to validate and qualify the sensor data. The 

fire condition is then transmitted via LoRa to a base station 

that can process the data. The system will draw low current 

and is designed to derive power from solar panels to function 

autonomously.  

Keywords — Forest Fire Detection, Wireless 

Communication, Machine Learning, Chirp Modulation, Solar 
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I. INTRODUCTION 

According to the Federation of American Scientists, in 
the last 10 years an average of 64,100 wildfires occurred per 
year and an average of 6.8million acres burned annually [1]. 
As of July 1, 2020, nearly 24,350 wildfires have burned over 
1.4 million acres this year [1] . In the past, forest fires were 
considered a natural cycle and were ignored [2, 3]. 
However, with rising awareness emphasizing the 
preservation of natural resources, as well as data showing 
increased intensity of fires have resulted in forest fires 
becoming a global environmental concern. Thus, forest fire 
detection and monitoring systems have sparked the interests 
of scientists and researchers worldwide. 

The purpose of this project is to design a prototype for a 
solar powered forest fire detection and monitoring system 
that will serve as a preventive measure for forest fires. This 
device would be used in areas where human activity is 
present especially parts of the forest that are highly 
susceptible to forest fires. This device can also be used to 
monitor and detect forest fires to help researchers and 
firefighters determine potential fires or the severity of the 
existing fires. In this research paper, a prototype system is 
promoted as a solution to combat this issue using sensors, 
computer vision and machine learning, and LoRa 

communication with the entire device powered by a PV 
(photovoltaic) system. 

II. BACKGROUND RESEARCH 

Sensor technology, machine learning, battery charging, 

solar panels, and RF design are some of the topics the team 

challenged for this project. In order to create suitable 

subsystems, it was imperative to understand what other 

researches have already established in order to make design 

decisions.  

A. Sensors 

Current forest fire detection and monitoring systems use 

video cameras to recognize smoke spectrum, thermal 

cameras to detect heat glow, IR spectrometers, and LIDAR 

(detection of light and range) to detect smoke particles 

using reflected laser [4]. These systems are costly due to the 

nature of the technology. Our objective was to design a 

system that can accomplish its goal while driving cost down 

significantly through careful electronic design and 

component selection.  

 

Sensors were chosen to target three main characteristics 

of fire: flame flicker, increase in gas concentrations, and 

presence of smoke.  

 

1) Gas Sensor 

In the event of a fire, the air quality changes; the severity 

depends on the severity of the fire and the environmental 

conditions. Forest fires tend to release high levels of N2, 

O2, CO, CO2, H2 gasses [5]. Changes in oxygen levels can 

provide indication of the type of fire. A low change in 

concentration suggests a smoldering fire while large 

changes suggest liquid fuel fires that rapidly burns [5]. 

Other methods of gas detection use a combination of 

sensors to detect temperature and humidity and an 

algorithm to detect gases such as CO and CO2 [5]. These 

gas sensors use metal oxide or n-LTPS MOS Schottky 

diode on a glass substrate [5]. 

 

The gas sensor chosen for this project is the BME680 

manufactured by BOSCH. This 4 in 1 sensor is able to 

measure total volatile organic compound measurements by 

measuring the resistance in gas sensitive-layer. The sensor 

can also measure humidity with ±3% accuracy, barometric 

pressure with ±1 hPa absolute accuracy, and temperature 

with ±1.0°C [6]. When the hot plate on the sensor is heated, 

the resistance value is measured and is used to determine 

concentration of total volatile organic compounds Ethanol, 

Alcohol and Carbon Monoxide [6]. According to German 

Federal Environmental Agency higher concentrations of 

VOC indicate lower air quality [7]. The sensor also features 

an IIR filter which is used for temperature compensation, 



that is then used to calculate other measurements and 

provide better accuracy. 

 

2) Smoke Senosor 

Smoke detection methods that use the photoelectric 

principle are primarily used for smoldering conditions and 

are effective in doing so since response times are quick [5]. 

In this method, the ionization smoke sensor measures 

smoke relative to the ionization levels in the air [5]. A 

potential difference is applied through a chamber and the 

output current is measured as a result [5]. Moreover, 

photoelectric method dictates that the concentration of 

smoke in the air will proportionally increase the light 

scattering capacity [5]. Thus, this method measures the 

variation in light scattered using optical science and 

technology to detect the smoke levels in each area. It is also 

common to combine this method with gas sensing 

technology for better results.  

 

Smoke detection uses two techniques to detect its 

presence: non-visual and visual [5]. In a non-visual method, 

the detection technique looks smoke combustion conditions 

such as pyrolysis, smoldering, and flaming; these 

conditions are contingent on the type of fire and the 

environmental surrounding [5]. Visual techniques mostly 

use cameras which can detect both flame and smoke [5]. 

The nature of smoke is that it exists at the beginning of the 

fire which is crucial to understand when designing fire-

detection strategies. 

 

Computer vision will cover the visual aspect of smoke 

detection and the smoke sensor will use a non-visual 

approach. The MAX30105 module from Maxim Integrated 

was chosen to for smoke detection since it combines the 

uses of three LEDs (Red, Infra-Red (IR), Green), a photo 

diode and a high performance analog front end (AFE) to 

differentiate between sub-micron (below 1 micron) 

particles such as smoke, and super micron (above 1 micron) 

particles such as dust and steam. The device also works in 

high ambient light, complete darkness, or artificial light [8]. 

Moreover, the method of smoke detection is through 

External Sampling Photoelectric (ESP) smoke detection 

technology. Rather than using an internal chamber that 

many traditional smoke detector devices use, an optical 

smoke detector IC is used to detect smoke outside the 

device [8] . 

 

3) Flame sensor 

There are two methods of flame detection: non-visual and 

visual flame techniques [5]. Non-visual flame sensors use 

ultra-violet, visible, and infrared rays [5]. Flames emit a 

radiation whose intensity is determined by the flame 

temperature and the type of fuel burning [5]. An ultra-violet 

sensor is used to measure the brightness since UV sensors, 

infrared and visible light sensors are used to measure flame. 

However, IR and visible light sensors are more effective 

than ultra-violet sensors [5]. UV sensors tend give out more 

false positive alerts due to the UV sensors emitting sparks 

of UV spectra that essentially interferes with the signal [5].  

 

The sensor will take a non-visual approach by using a 

pyroelectric infrared detector by PYREOS (ePY12241). 

There are five key characteristics to consider when using 

pyroelectric infrared detector: output sensitivity that 

depends on narrow infrared band, signal to noise ratio, 

noise equivalent power (NEP), specific detectivity (D*), 

and response time [9]. The output sensitivity, D*, SNR, and 

NEP are dictated by the manufacturer in the module design. 

The user, however, has the ability to choose the electrical 

response time by adjusting the impendence and capacitance 

as well as setting the high pass and low pas filter values and 

the sample rate of the filter. [10] This sensor will be useful 

in identifying flames in low light, such as at the nighttime. 

To use in the daytime, it must be paired with PYREOS’ 

sunlight-rejection sensor. 
 

The nature of fires comes with various characteristics 

such as shape, size, color, location, growth, degree of 

burning, and dynamic texture. Typical sensors are not 

capable of measuring each of these characteristics and their 

parameters accurately [5]. Thus, flame sensors that depend 

on these techniques give false alarms whose validity can 

only be evaluated by an experienced individual. A device 

to solve this issue is using a camera that can capture images 

of fire and analyze them accordingly to establish fire 

detection [5]. The visual approach of detecting flame is 

covered in the Computer Vision section. 

 

B. Computer Vision 

Machine learning has advanced significantly in the past 

decade. From a single image, objects can be detected and 

classified. One of the well-known neural network is YOLO 

[11] which has an object detection and classification for 

real-time application.  

 

There were also researches done specifically to detect 

smoke and fire using computer vision. A method by the 

Ministry of Public Security of Shenyang Fire Research 

Institute [12] shows how it can detect fires and smoke at a 

distance by utilizing optical flow and foreground image 

accumulation. Another research by Nicholas True [13] 

utilizes motion detection using frame differencing and 

color classification to isolate color of fire.  

 

Our project makes use of this technology in order to 

detect fire using a regular camera. By taking an image using 

a regular camera, more information is acquired than by 



using a thermal camera while alleviating the cost 

significantly. The details can be analyzed using a neural 

network from the taken image to determine whether the fire 

exists in the image.  

 

The design of our neural network is inspired by the Fire 

Detection Net [14] which has an architecture illustrated 

below.  

 
Figure 1: Architecture of neural network 

This is designed for devices with limited CPU, memory, 

and power draw which is desirable for our setup. It uses 

TensorFlow 2.0 and Keras’s Sequential API to build the 

convolutional neural network.  

 

There will be color classification and optical flow to 

improve the accuracy of fire detection. Color classification 

can be performed by detecting pixels that contain a color of 

fire and masking the others. OpenCV also has optical flow 

methods such as Lucas-Kanade method and Dense optical 

flow which are ideal for detecting motions using two 

frames. [15] Lucas-Kanade method checks the motion of 

feature points and creates lines representing the motion of 

those feature points. While the Dense optical flow is based 

on Gunner Farneback’s algorithm which computes motion 

for all the points in the frame creating a blob of motion 

rather than lines. For our use, we determined that the Dense 

optical flow would be better to identify the flickering of the 

fire rather than the Lucas-Kanade method.  

 

C. Battery Charging 

The batteries chosen for this prototype are two 18650 

lithium ion (Li-Ion) cells in series to power the system. The 

Li-Ion integrated charging chip chosen was a LT3652 

produced by Linear Technology. It is capable of up to 2A 

max charging output and comes with a MMPT (Maximum 

Power Point Tracking) integrated into the chip itself. Its 

wide input range of 4.95V to 32V with an Absolute max of 

40V was more than adequate for charging the two cells. The 

two cells are each 2700mah to 3200mah depending on 

which set is used and provide plenty of room for running 

the system without powering the solar array for minimum 

two hours. 

 

D. PV Solar Array 

The solar array consists of two 1.5-watt panels in parallel 

that have 16.6 volt and 90 mA max under load with a 

MMPT (Maximum Power Point Tracking) making sure the 

input is always optimal. The 3-watt array handles powering 

the circuit during peak solar radiation conditions and 

charging the array in the daytime. The lower current output 

of the panels means that this chip is running off panels that 

are 100W/m2 which is enough to slowly charge the panels 

throughout the day. 

 

 

 
Figure 2:Current vs Voltage vs Power 

To find out what panels were needed the following 

equations were done. 

 

𝑉𝑂𝐶 = (𝑉𝐵𝐴𝑇(𝐹𝐿𝑂𝐴𝑇) + 𝑉𝐹𝑂𝑅𝑊𝐴𝑅𝐷(𝐷1) + 3.3𝑉) ∗ 1.15  (1)  

𝐼𝑃(𝑀𝐴𝑋) = 𝐼𝐶𝐻𝐴𝑅𝐺𝐸 ∗
𝑉𝐵𝐴𝑇(𝐹𝐿𝑂𝐴𝑇)

𝜂 ∗ 𝑉𝑃(𝑀𝐴𝑋)

 

𝑉𝑃(𝑀𝐴𝑋) = (𝑉𝐵𝐴𝑇(𝐹𝐿𝑂𝐴𝑇) + 𝑉𝐹𝑂𝑅𝑊𝐴𝑅𝐷(𝐷1) + 0.75𝑉)

∗ 1.15  (2) 

Solving for these equations gets the following.  

𝑉𝑂𝐶 = 13.8𝑉 

𝐼𝑃(𝑀𝐴𝑋) = 1.8𝐴 

𝑉𝑃(𝑀𝐴𝑋) = 10.9𝑉 

The two panels chosen are the following. 

𝑉𝑂𝐶 = 20.5𝑉 

𝐼𝑃(𝑀𝐴𝑋) = 0.18𝐴 

𝑉𝑃(𝑀𝐴𝑋) = 16.6𝑉 

Comparing the graph for the control range and minimum 

input, this system meets the requirements for the Li-Ion IC 

to charge batteries. 



 
Figure 3: Control range 

For our purpose, the lower amperage means slower 

charge times but with the 15% safety factor on the panels 

they will provide enough power to keep the system running 

all day and keep a set of charged batteries maintained.  

 

E. RF Design 

1) Frequency Selection: The main discussion of Radio 

Frequency technologies comes down to range. The 

following numbers were compared to get the maximum 

range out of our device. Actual distances depend on a 

variety of variables and the ones in the table below are just 

averages.  

Technology  Frequency Range 

Bluetooth 2.45 GHz 30 Feet 

Wifi 2.45 GHz (or 5GHz) 100 Feet 

Zigbee 2.4 GHz 1000 Feet 

FSK Modulation 

(900MHz) 

900 MHz 2+ Miles 

LoRa 400 MHz / 900 MHz 10+ Miles 
Table 1: Comparison Between Technology Ranges and Frequencies 

Furthermore, the Free-Space Path Loss equation is used 

to determine the attenuation of radio energy between two 

antennas.  

 
𝐹𝑆𝑃𝐿 = (

4𝜋𝑑𝑓

𝑐
)2 

(3) 

 

where d is the distance between antennas, f is the 

frequency, and c is the speed of light. Trying with different 

ranges, a desired attenuation can be achieved with Table 1.  

Finally, due to regulations of how much power can be 

dissipated in the 400MHz bands, 900MHz is a good 

solution for global use and higher power dissipation. 

 

2) LoRa: LoRa, literally “Long Range”, is a proprietary 

spread spectrum modulation scheme that is derivative of 

Chirp Spread Spectrum modulation (CSS) which trades 

data rate for sensitivity within a fixed channel bandwidth 

[16]. The idea is creating a physical layer protocol that is 

separate from higher layer implementations which allow 

the protocol to be generically used with new and existing 

devices. LoRa is a bandwidth scalable, low power, and 

long-range modulation technique. It allows a very large link 

budget that exceeds conventional FSK [16]. This 

technology is still relatively new, however, and resources 

describing its usage and modulation is hard to come by. 

LoRa is ideal compared to other common protocols, e.g. 

Zigbee, for this project as it boasts (in ideal conditions) a 

range of up to 30 miles [17].  

 

3) Chirp Spread Spectrum (CSS): To send signals 

wirelessly it is essential to encode the signal on a physical 

medium. Typical techniques of doing this are modulating 

characteristics of a carrier wave like the amplitude, 

frequency, phase, or any combination thereof.  LoRa, on the 

other hand, uses a proprietary version of Chirp Spread 

Spectrum Modulation (CSS). Chirp Spread Spectrum was 

developed for radar applications in the 1940’s [16]. It has 

become more popular recently as it is low power and has 

great sensitivity. Unlike other modulation techniques, it has 

the inherent ability to resist multipath fading, Doppler 

effects, and interference in the same bands. The idea is that 

a “chirp” has a constant amplitude but the frequency passes 

through the entire bandwidth in a certain time frame. If the 

frequency increases it’s called an “up-chirp” and if the 

frequency changes from highest to lowest it is considered a 

“down-chirp” [18]. The alteration between up-chirps and 

down-chirps create the symbols for LoRa. 

 
Figure 4: Spectrogram of LoRa physical layer [17] 

III. PROJECT F.I.R.E APLLICATION 

Project F.I.R.E. is to be mounted in a pre-determined 

location. The suggested place to mount the device is 

moderately high on a tree trunk where the sensors and 

camera can see a relatively wide area. Once the device is 

placed in its location, the batteries should be put into the 

device and the device will attempt to join the mesh network 

automatically. It will continue to try and join a network 

until the root node has responded. Then it will attempt to 

detect fires. The device is now installed! There is no more 

user interaction with the device needed. 

Prior to installing the network, it is imperative that a 

base station is set up. This “Root Node” of the network is 



where all the data is sent to. This device is just responsible 

for passing the data on to a database, saving as a file, or 

other application, and is up to the user to determine its 

usage and function. There are a few requirements on how 

the root node must respond so that a node can join the 

network correctly (e.g. sending the current time when 

joining the network to update the clocks). 

IV. DESIGN 

The following sections cover some of the design choices 

made for Project F.I.R.E. 

A. Hardware 

The project contains two controllers, a Raspberry Pi for 

sensor data and a SAMR35 for the network data. The 

SAMR35 is very low power and will allow the device to 

last longer on its batteries while the Raspberry Pi has more 

power to run machine learning and computer vision 

algorithms. The sensors will be discussed in a section 

below. The device uses two batteries as mentioned in a 

previous section with a Li-Ion charging IC. This made the 

design easier to implement. 

B. Software 

The software of the system is simple to understand but 

became a little complex to implement. There are two 

portions: Network and Sensor. The Sensor software reads 

all the sensors, takes two pictures with the camera, and 

processes that data with some computer vision and machine 

learning algorithms to determine if there is a fire. The 

network software handles incoming and outgoing network 

packets. The network software is implemented as a state 

machine that is always running whereas the sensor software 

is sequential and only run once periodically. In the original 

design, the Raspberry Pi shares its data with the SAMR35 

through UART. In the final design due to some constraints, 

the Sensor Software saves its data to a file and the Network 

software can read that data. 

C. Sensors 

Each sensor outputs raw data that is then analyzed to 

create a data processing algorithm in python to determine 

probabilities of gas, smoke, and flame.   

 

1) Gas: 

The data collection for the gas sensor is very 

straightforward. Since this sensor was calibrated for a long 

time, the measurements are stable and relatively accurate. 

The raw measurements for temperature, humidity, and gas 

are obtained and then compensated to improve accuracy. 

The final values are calculated in Celsius, percent, and 

ohms to interpret the data. Temperature and humidity 

readings from the can be used to monitor the environment 

and a warning can be sent when high temperatures exist in 

a dry environment. In fire conditions, the gas measurement 

rises significantly higher compared to non-fire conditions. 

When a gas measurement reaches a maximum value, a 

warning is sent to indicate high levels of volatile organic 

compounds present in the atmosphere.  

 

2) Smoke: 

The PIM438 module which includes the MAX30105 

module receives a raw data from the IR and Visible light 

detector. The algorithm is designed to take the mean of 

incoming data and look for changes between the means by 

taking the difference between the recent mean and the mean 

taken X readings ago (delta). A change is detected when the 

delta value is greater than the threshold value. The mean 

size, delta size, and threshold can be tuned to increase data 

smoothing and sensitivity. A function was created to count 

the maximum number of consecutive True changes. If this 

value is greater than a set value, then flame has been 

detected. 

 

3) Flame 

The sensing element in the ePY12241 provides an output 

current that is proportional to the rate of change of 

temperature of the material. The chip uses an analog front 

end to receive an analog signal, which is then filtered by a 

high pass filter. The signal then goes into a sigma delta 

ADC convertor. Then, the low pass filter removes large 

frequencies, and the data is then read by the MCU.  

 

A data window is specified, and the RMS of the raw 

signal is taken to determine the signal strength of the 

combination of the frequencies in the bandpass of the filters 

used. The reading is then divided by the signal multiplier, 

which is the sample rate.  From here the flame algorithm is 

similar to the smoke algorithm where the delta is calculated 

from the current value and the value X readings ago. A 

change is detected when the delta value is greater than the 

threshold value. The RMS data window, mean size, delta 

size, and threshold can be tuned to increase data smoothing 

and sensitivity. A function was created to count the 

maximum number of consecutive True changes. If this 

value is greater than a set value, then flame has been 

detected. 

 

𝑅𝑀𝑆 =  
√(𝑑1)2 +  (𝑑2)2 + ⋯ (𝑑𝑛)2

𝑛
     (4) 

 

dn is the raw data collected from the pyroelectric infrared 

detector. 

n is the number of data collected in a data window (data 

window size). 

 



D. Computer Vision 

Our computer vision comprises of two methods: color 

classification plus optical flow and machine learning. 

The color classification is done by finding the pixels with 

certain range of values similar to a fire. The image is first 

filtered by Bilateral filter to blur some of the textures 

while maintaining the edges. Sample image from our 

Raspberry Pi Zero W is shown below. 

   

 
Figure 5: Sample images for machine learning 

To detect motion, OpenCV Dense optical flow [15] is 

used. Sample output is shown below.  

 

 
Figure 6: Sample output from OpenCV 

Then, we apply filters and thresholding to find 

contours around the detected fires in both images from 

color classification and optical flow. The centers of these 

contours are compared to analyze the overlap between 

the two methods. Contours with low area size is 

eliminated to avoid excessive detections of contours and 

to obtain lower false positives.  

 

 
Figure 7: Filters used to find contours 

By verifying if the centers of the contours are close to 

each other with certain area size, we can confidently 

determine that there is a possible fire. 

 

For our machine learning, we trained a model using the 

architecture below (with TensorFlow 1.8.0 and Keras 

2.1.5) which is inspired by the Fire Detection Net. [19] 

We tried to simplify the architecture to obtain less 

parameters while keeping its validation accuracy higher 

than 90%. But simplifying the architecture too much  

resulted in lower accuracy. Our final architecture was 

able to achieve over 1% more accuracy compared to the 

Fire Detection Net mentioned earlier for our dataset. 

ReLu was used for our activation function, and binary 

cross entropy was used as our loss function.  

 
Figure 8: Final architecture 

Our dataset is obtained by gathering forest fire and 

forest images using the Microsoft API. [20] It is 

composed of about 600 images we obtained online. We 

dedicated 75% of it to the testing and 25% for evaluation. 

Sample images are shown below.    

 

     
Figure 9: Images from Microsoft API 

V. RESULTS AND DISCUSSION 

This section focuses on testing and implementation. The 

team’s experience with each subsystem will be discussed 

briefly below. 

A. Power Subsystem 

The subsystem that runs the Raspberry Pi Zero and all the 

sensors is made by running two buck converters to drop the 

voltage of the batteries to 3.3 volts and 5 volts. These two 

voltage rails are responsible for running all systems as well 

as the PCB. 

 

B. Sensor Subsystem 

After exposing the three sensors to a fire burning in a 

grill, each sensor was able to successfully detect a fire. The 

gas sensor showed that when its exposed to a fire, the 

temperature increased greater than 60C and the relative 

humidity was greater than 60%. However, this does not 

entirely indicate there is a fire, rather it can be used to 

determine potential forest fire condition. In other climates, 



the humidity can be lower. The gas measurement in ohms 

was significantly higher than in non-fire conditions. 

 

The smoke sensor was able to detect more than 20 

consecutive True changes which satisfied the requirement 

for smoke detection.  

 

With a nearby fire, the most significant bit of the sensor 

is set which resulted in a flame detected. During a test using 

a lighter placed approximately 1m away in low light, the 

flame algorithm was able to detect flame with 10 

consecutive true statements. This is expected since the 

lighter produces a smaller flame. The thresholds, channel 

and analog settings can be adjusted to increase or decrease 

the algorithm’s sensitivity.  

 

C. Network Subsytem 

The network subsystem works in theory. Due to some 

unforeseen complications with implementing the LoRa 

physical layer separately from a LoRaWAN MAC layer has 

made the process complex. To save time and effort, the 

mesh network, and thus the network subsystem, was 

implemented on the raspberry pi for our demonstration; not 

the SAMR35. The system uses 16-bit ID numbers meaning 

that the network, theoretically, can support 65535 nodes. In 

reality, this is too many nodes. Light arbitration was 

implemented in the form of delays and timeouts on the 

receive and send portions of the network to avoid collision. 

D. Processing Subsystem 

The best model’s training result is shown below. It 

uses binary cross entropy for the loss, batch size of 32, 

learning rate of 1e-5, and 200 epochs. The highest 

validation accuracy it was able to achieve was 93.36%. 

 
Figure 10: Training loss accuracy 

Using our sample test set (16 images) which contains 

images not present in the dataset we used to train the 

model, we were able to achieve 87.5% accuracy. Some of 

the results are shown below.  

 
Figure 11: Positive results from machine learning 

 

The PiCamera works properly in our system and takes 

two consecutive images with around a second interval. 

Then, we applied color classification and optical flow as 

designed. The contours from color classification totaled 10 

while there were no contours detected using the optical 

flow. This calculated to 35% confidence score that there is 

a fire using color classification and optical flow. The 

resulted images are shown below. 

 

 
Figure 12: Detecting contours 

The confidence score we received from our model for this 

image was 40%. From our two methods, we resulted in final 

confidence score of 37.5%. The low score is most likely due 

to our environment setup. We trained our models 

specifically with forest fire and forest environment. Thus, 

it does not work as well in non-forest environment. For our 

color classification plus optical flow method, we would 

need to further fine tune the values for the colors, filters, 

and thresholding to improve our results.  

 

VI. CONCLUSION 

In conclusion, the team put together a single fire 

detecting node that is solar powered. Throughout testing 

and integration, the team noticed that sometimes the fire 

detection algorithms resulted with some false positives or 

negatives. This is fixable by enhancing our training data set 

for the machine learning algorithms and adjusting the 

sensors configuration settings. 

 

Moreover, the team learned to be cautious with using new 

technologies due to some issues implementing LoRa on the 

final product. All in all, the project finished in a working 

state. It can detect fire and if connected to a working LoRa 

transceiver, can send data through a custom mesh network 

software. 
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